面试题62. 圆圈中最后剩下的数字


面试题62. 圆圈中最后剩下的数字

约瑟夫环问题

0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。

例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。



示例 1:

输入: n = 5, m = 3
输出: 3
示例 2:

输入: n = 10, m = 17
输出: 2

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

我们将上述问题建模为函数 f(n, m),该函数的返回值为最终留下的元素的序号。

首先,长度为 n 的序列会先删除第 m % n 个元素,然后剩下一个长度为 n - 1 的序列。那么,我们可以递归地求解 f(n - 1, m),就可以知道对于剩下的 n - 1 个元素,最终会留下第几个元素,我们设答案为 x = f(n - 1, m)。

由于我们删除了第 m % n 个元素,将序列的长度变为 n - 1。当我们知道了 f(n - 1, m) 对应的答案 x 之后,我们也就可以知道,长度为 n 的序列最后一个删除的元素,应当是从 m % n 开始数的第 x 个元素。因此有 f(n - 1, m) = (m % n + x) % n = (m + x) % n。

我们递归计算 f(n, m), f(n - 1, m), f(n - 2, m), … 直到递归的终点 f(1, m)。当序列长度为 1 时,一定会留下唯一的那个元素,它的编号为 0。

下面的代码实现了上述的递归函数。


class Solution {
    int f(int n, int m) {
        if (n == 1)
            return 0;
        int x = f(n - 1, m);
        return (m + x) % n;
    }
public:
    int lastRemaining(int n, int m) {
        return f(n, m);
    }
};

文章作者: anlen123
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 anlen123 !
 上一篇
面试题59 - II. 队列的最大值 面试题59 - II. 队列的最大值
面试题59 - II. 队列的最大值请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都是O(1)。 若队列为空,pop_front 和
2020-05-07 anlen123
下一篇 
win10修改配置的git账号密码 win10修改配置的git账号密码
打开控制面板点击用户账户点击管理windows凭据 找到对应的网址,点击删除在继续操作直到再次提示输入git的账号密码
2020-04-30 anlen123
  目录